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ABSTRACT 3540° 
g 
G 

The performance of the  l i q u i d  hydrogen flow system during the  s t a r t u p  
@J 
M 

t r a n s i e n t  of a n u c l e w  rocket w a s  measured i r _  a f u l l - s c a l e  simulated engine 

system zt Lewis  Research Center. I n - f l i g h t  exhaust conditions were approxi- 

mated by maintaining a nozzle o u t l e t  p;-essure of 1 psia.  Data and general  

conclusions on o v e r a l l  system performance are presented f o r  nonnuclear oper- 

ation. The ab i l l - ty  of t h e  rocket system t o  boots t rap  (i. e., t o  bu i ld  up 

appreciable hydrogell flow and pressure ir, t h e  nuclear  r eac to r  witholit extra- 

system ass i s tance)  w a s  c l e a r l y  demonstrated by using only t he  energy from 

hydrogen tanlr p r e s s i r e  and l a t e n t  heat of engine com;?onents. The seve r i ty  

( s m a l l )  a d  c h a r a c t e r i s t i c s  of two-phase flow o s c i l l a t i o n s  during windmill 

were detemined. Xo s i g n i f i c a c t  operat ional  problems were encountere?. 
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F'LOW SYSTEM STARTUP OF A FULL-SCALE 

SIMULATED NUCLEAR ROCKET ENGINE 

by Benjamin H. Colmery and Albert G. Powers 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

Operation of a nuclear rocket engine w i l l  involve propel lant  flow phe- 

comena and in t e rac t ions  imperfectly understood at  the  present t i m e .  O f  

p a r t i c u l a r  concem are  t h e  propellant system t r ans i en t s  encountered during 

t h e  engine s t a r t u p  cycle. A t  t h e  start of t h e  pro jec t  described herein,  

t h e  nature  and t h e  magnitude of t h e  t r ans i en t s  t h a t  would be encountered 

were not known, even empirically. I n  f a c t ,  s t a r t u p  of a ccmplete nuclear 

rocket system had not ye t  been attempted. The undefined s t a r t u p  problems 

might a f f e c t  rocket engice control  system design as well  as design of t he  

system i tself .  

Sence, tests of a f u l l - s c a l e  nuclear rocket engine system were under- 

taken. Nonnuclear t es t  runs only were made; t h a t  is: t h e  only energy 

ava i lab le  t o  d r ive  t h e  propel lant  turbopump was t h e  l a t e n t  hea t  i n  t h e  flow 

system ccmponents at t h e  start of t h e  run. There were th ree  p r inc ipa l  ob- 

j ec t ives  of these  t e s k :  

i (1) t o  evaiuate  t h e  capabi l i ty  of t h e  system t o  boots t rap 

( 2 )  t o  f i n d  and solve operational problems encountered during nonnwlear 

system s t a r t u p  

'BootstraF, as used here, i s  t h e  achievement of appreciable propel lant  
pressure i n  t h e  r eac to r  core, when the rocket starts from r e s t  and u t i l i z e s  
no ex terna l  means t o  acce lera te  propel lant  flow. 
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(3) t o  develop an a n a l y t i c a l  model of a nuclear Yocket engine p r o p e l l m t  

flow system which w i l l  be he lp fu l  i n  the design of second generation 

nuclear rocket engines 

Data for a number of add i t iona l  experimental programs ( p r i n c i p a l l y  sys- 

tem component evaluations) were obtained during ezch experimental run. Re- 

p o r t s  on t h e  results of these add i t iona l  experiments are i n  preparation. 

EQUImITT ANI) PROZEIITXIF: 

To accomplish ths  forregoing nucl-ear rocket system t e s t  ob jec t ives ,  an 

e x i s t i n g  f a c i l i t y  ( f ig .  1) a t  the  Plrun Brook StatAon of t h e  NASA-Lewis Re- 

search Center, was chosen i n  which -to assemble t h e  first simulated nuc lear  

engine system. The f a c i l i t y  has the  necessary cryoge3ic handling capa- 

b i l i t ies ;  a R d ,  more impor’iarit, an a l t i t u d e  &must system: rocket nozzle 

ou-tlet pressure could be mainta?”.nerfi. at about 1 p s l a  throughout a, run. 

Research hardware i n  the  facilit;! ( f i g .  2 )  cons is ted  of a 2000-ga:13-on 

l i q u i d  hydrogen run tank wit‘’! a closed. loop pressure vent system. %Tie 

tubopump i s  a Rocketdyne 6-stage liq-did hydrogen axial pump and a 6-stage 

a x i a l  gas turb ine  designate3 as t h e  Mark 9. 

The engine has a moXfied Rocketdyne XK-2, regenera t ive ly  cooled, 

bell-shaped nozzie. 

po r t  and two windows for* v2ewing the c0z-e. 

The nod i f i cz t ions  consisted. of adding a hot  gas bleed 

The r e a c t o r  assembly i s  bas i ca l ly  

a KIWI-bl-B engine. For econl3mj.c r e a s m s ,  aluminum was s u b s t i t u t e d  f o r  

beryll ium i n  t h e  r e f l e c t o r .  The core i s  unfueled graphite. These nodi f i -  

ca t ions  do not compromise the d a t a  obtained during the  tests. 

The manipulated va r i ab le s  @%her than t s n k  pressure  are delqy t i n e  of 

turbine-power control-valve opening r e l a t i v e  t o  i n i t i a l  opening of . t i e  pump 
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discharge valve, and t h e  manner i n  which the turbine-power cont ro l  valve 

was manipulated during t h e  run. 

The tes t  procedure follows. After t he  tank and all piping were cleaned 

The tank shutoff and iner ted ,  l i q u i d  hydrogen was loaded i n t o  t h e  run tank. 

valve w a s  then opened and l i q u i d  hydrogen permitted t o  en te r  and cool the 

pump and pump discharge l i n e  t o  the pump discharge valve. This operation 

brought t h e  pump t o  l i q u i d  hydrogen operating temperature before  ro t a t ion  

corn-enced i n  order  t o  ensure t h a t  t he  f l u i d  i n  the pump bearings w a s  l i q u i d  

and not gaseous hydrogen. The a l t i t u d e  exhaust system w a s  started and, 

simultaneously, t h e  run tank pressure was raised t o  a preselected value 

(25, 35 o r  50 ps ia ) .  The pump discharge valve w a s  then opened. 

During i n i t i a l  tests, t h e  hydrogen w a s  forced through t h e  system by 

These i n i t i a l  tank pressure only; power was not applied t o  the turbine.  

tests were used t o  evaluate whether s ign i f i can t  flow o s c i l l a t i o n s  occarred 

and t o  minimize the r i sk  of damage t o  t h e  pump while t h i s  evaluation w a s  

being made. 

I n  szibsequerb t e s t s ,  power was applied t o  the turb ine  and t h e  system 

was permitted t o  bootstrap.  

t u rb ine  could no longer ex t r ac t  enough energy from t h e  gas t o  sus t a in  flow. 

The na2ipulated var iab les  were changed i n  accordance w i t h  s p e c i f i c  run ob- 

j e c t i v e s  i n  these  la ter  runs. 

Propellant flow increased rap id ly  u n t i l  t h e  

FESULTS AND DISCUSSION 

An a n a l y t i c a l  e f f o r t  i n  progress has developed an analog computer 

program t h a t  gives good agreement with t es t  da t a  on t h e  system and i t s  

components f o r  q u a s i s t a t i c  performance. Refinements t o  t h i s  computer pro- 

gram are being made t o  attempt t o  enable predict ions of dynamic phenomena. 



c 

4 

U n t i l  models of these  dynamic phenomena a r e  defined, t h e  explanations of 

flaw dynamics can be only empirical  i n  nature. 

i n  t h i s  paper a r e  concerned with what occurred r a t h e r  than why it occurred. 

P a r t  of t h e  conclusions are concerned with o s c i l l a t i o n s  of t h e  propel lan t  flow 

system. This paper is concerned only with t h e  o s c i l l a t i o n s  observed below a 

frequency of about 15 cps, t h e  observed propellant-system o s c i l l a t i n g  

frequency. 

Hence, t h e  r e s u l t s  presented 

An i n i t i a l  set of runs w a s  made t o  determine t h e  s e v e r i t y  of flow o s c i l l a -  

t i o n s  with no power t o  t h e  turbine.  

sults of these i n i t i a l  runs. 

Five conclusions were drawn from t h e  re- 

F i r s t  of all, o s c i l l a t i o n s  i n  t h e  propel lan t  system of t h e  hydrogen 

weight flow, temperature, and pressure were considerably smal le r  i n  ampli- 

tude  t h a  had been expected from p r i o r  experiments on two-phase flow o s c i l -  

l a t i o n s .  2’3 For example, f i g u r e  3 shows t h e  v a r i a t i o n  of f l u i d  s t a t i c  

pressure  with t i m e  a t  t h e  i n l e t  manlfoid of t h e  nozzle coolant tubes.4 

t r a c e s  f o r  th ree  runs at d i f f e r e n t  t ank  pressures are shown. Although o s c i l -  

l a t i o n s  d e f i n i t e l y  occur, t h e i r  amplitudes are  much smaller than expected, 

and t h e  higher-frequency larger-amplitnde o s c i l l a t i o n s  l a s t e d  f o r  only a few 

seconds. 

Time 

It should be remembered t h a t  observations on tests of one nuc lear  rocket 

‘Ellerbrock, H. H.; Livingood, 5. N. B. ,, St ra igh t ,  D. M. : Nuclear 
Rocket Propulsion; NASA SP-20; p. 27; 1962. - 

’Sanders, J. C.;  Heppler, H. J. ; H a r t ,  L E .  : Nuclear Rocket Propulsion; 

41f only one loca t ion  i s  t o  be used t o  i l l u s t r a t e  t h e  system response 

More important, this i n l e t  is  i n  a two-phase flow condi- 

NASA SP-20; p. 57; 1962. 

t o  two-phase f l o w ,  t h e  nozzle coolant system response i n l e t  i s  c e n t r a l  t o  
t h e  flow system. 
t i o n  during t h e  boots t rap  t i m e  i n t e r v a l  of p r i n c i p a l  cu r ren t  in te res t , .  
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engine without nuclear heating w i l l  not necessar i ly  occur on d i f f e r e n t  nu- 

c l e a r  rocket engines o r  with nuclear-heated flow. Unt i l  a dynamic flow 

model i s  developed, it i s  not c l e a r  what e f f e c t  a d i f f e r e n t  set  of system 

physical dimensions, f o r  instance,  would have on t h e  amplitudes o r  fre- 

quencies of osc i l l a t ions .  Hence, it i s  of i n t e r e s t  t o  f u r t h e r  examine t h e  

o s c i l l a t i o n s  observed, even though they were not a r e a l  problem i n  t h i s  o r  

o ther  t es t  runs completed t o  date. 

A second point  from the i n i t i a l  runs i s  that t h e  o s c i l l a t i o n s  i n  t he  

system are damped. Figure 4 i s  a p lo t  of pressure a g a i n s t  t i m e  at  t h e  

nozzle coolant i n l e t  f o r  an unpowered run w i t h  flow produced only by 

35-psia tank pressure. Sone i n i t i a l  disturbance a t  the start of the run 

produces an o s c i l l a t i o n  t h a t  smoothly decreases i n  amplitude as the  run 

progresses. The decrease i n  amplitude of the o s c i l l a t i o n s  i s  somewhat 

similar t o  t h a t  of underdamped osc i l la t ions .  

A t h i r d  conclusion seen i n  f igure  3 i s  t h e  e f f ec t  of tank pressure 

on the damping of system pressure osc i l la t ions .  The tank pressure had 

a s i g n i f i c a n t  e f f e c t  on the length of t i m e  at  which higher frequency o s c i l -  

l a t i o n s  were observed. A t  25-psia tank pressure,  t h e  chilldown c s c i l l a t i o n s  

pe r s i s t ed  f o r  more than 10 seconds. 

A fou r th  point  seen i n  f igu re  4 is  that t h e  cha rac t e r i s t i c s  of the 

o s c i l l a t i n g  system chartge w i t h  t i m e .  For a c l a s s i c a l  second-order system, 

t h e  Gsc i l l a t ing  freqvcency is cor,stant. 

f i gu re  4 decreases with t i m e .  

i n  f i g u r e  4, it would be expected t h a t  i f  a per turbat ion were introduced 

The frequency of o s c i l l a t i o n  i n  

Fron the na ture  of t h e  observed nonl inear i ty  

subsequently i n  t h e  run t h e  resu l t ing  pressure o s c i l l a t i o n s  would occur at  

a lower frequency t'nan observed herein. 

confirm t h i s  observation. 

Data on subsecpient boots t rap  runs 
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A f i f t h  observation i s  t h a t  t he  l a rge  i n i t i a l  low-frequency t r a n s i e n t s  

d i e  out by the time the  nozzle coolant i n l e t  reaches liquid-hydrogen tempera- 

ture ,  bu t  the system continues t o  o s c i l l a t e  long a f te r  two-phase flow has 

c o m e  nc e d. 

BOOTSTRAP TESTS 

With the foregoing assurances t h a t  system o s c i l l a t i o n s  encountered 

were not large,  were damped, and decreased i n  na tu ra l  frequency as t h e  run 

progress, boots t rap t e s t s  were undertaken. 

The f i r s t  important r e s u l t  of t he  s e t  of boots t rap  t e s t s  i s  t h a t  boot- 

s t r a p  can take place.  It i s  conceivable t h a t  f l u i d  res i s tance ,  turbopump 

eff ic iency,  ambient back pressure (ground t e s t s  only)  and/or f l u i d  o s c i l l a -  

t i o n s  might have combined t o  prevent boots t rap.  

Figure 5 shows a p lo t  of pressure drop across  the  pump and weight flow 

r a t e  a t  t he  pump during the  course of t h e  run. Pressure drop across  t h e  pro- 

p e l l a n t  flow system i s  the  sum of run tank pressure and pump pressure drop. 

The b e s t  estimate of t h e  pump s t a l l  l i n e  i s  as shown. It i s  important t o  

note t h a t  time i s  very nonlinear i n  t h e  curve of f igu re  5. A s  time progresses, 

t he  curve would seek t o  follow t h e  i n t e r s e c t i o n  of t he  pump speed l i n e s  and 

the  load  f l u i d  res i s tance  l i n e  (not  shown); t h i s  i s  t h e  reason f o r  t he  bas i c  

path the curve follows. 

I n  the  run of f igure  5, propel lan t  tank pressure was 35 p s i a  and both 

t h e  pump discharge valve and t h e  turb ine  i n l e t  valve were opened a t  zero 

time. Some time elapsed before  s u f f i c i e n t  power was available a t  t h e  t.ur- 

bine t o  sus ta in  a s ign i f i can t  flow and pressure buildup, and during t h i s  

time flow and Pressure o s c i l l a t i o n s  occurred. 

weight flow and Pressure t o  peak values. 

The system then bu i l t .  up 

These peaks and subsequent 
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decreases occurred because the l a t e n t  heat present i n  t h e  engine components 

was used up and, without nuclear heat, no t  enough energy w a s  ava i lab le  a t  

t h e  turb ine  t o  sus t a in  flow and pressure. 

same t i m e  as t h e  pump entered stall. 

Osc i l la t ions  also-'occurred at t h e  

Figure 6, which is  the same run as i n  f i g u r e  5, shows t i m e  h i s t o r i e s  

of pump speed, propel lant  weight at the pump, and s t a t i c  pressures at  the  

nozzle coolant i n l e t  manifold and t h e  r eac to r  core out le t .  Several  po in ts  

on these curves are of i n t e r e s t :  

(1) With a 1-ps ia  vacuim at  t h e  rocket nozzle ou t l e t ,  there is  a rap id  

buildup of pressure i n  t h e  core ou t l e t  t o  subs t an t i a l  values. 

( 2 )  There are at least two perturbations;  they occur i n  t h e  ear ly  p a r t  

of boots t rap  and when the ran is  terminated. 

(3) The frequency of pressure and flow o s c i l l a t i o n s  decreases as the 

run progresses. 

(4) As i n  f i g u r e  4, the  osc i l l a t ions  r e su l t i ng  from each per turbat ion 

are underdamped. 

(5)  TRe damping coe f f i c i en t  on pressure o s c i l l a t i o n s  i m r e a s e s  as 

t i m e  increases.  

F i g w e  7 i s  a p l o t  of pressure,  flow rate, and punip speed f o r  a differ-  

en t  run. I n  t h i s  run, t h e  tu rb ice  power was cont ro l led  after 1 6  seconds t o  

maintain a base pmp speed of 4500 rpm, and per turbat ions i n  pump speed 

were introduced as shown by changes i n  t u rb ine  power control  valve. The 

following poin ts  are evident : 

(1) There are a t  least  two sets of o s c i l l a t i o n s  wh.ich occur i n  t h e  early 

p a r t  of t h e  run. 

( 2 )  The frequency of pressure and flow o s c i l l a t i o n s  decreases with t i m e .  
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(3) The o s c i l l a t i o n s  w e  .underdamped, and eoeffdcient  increases  with 

t i m e  . 
( 4 )  Flow o s c i l l a t i o n s  l ead  p res sme  osc f l l a t ions .  

From the foregoing, a simple, empirical  model can be construcked Of 

what is happening is the  systen: - a :nodel r,ot evident at t h e  ou t se t  of t h e  

tests. No attempt i s  aade here  t o  ex2lair. why t h e  o s c i l l a t i o n s  occur - 

n a t u r a l  frequency of these  syst,em oscillations decreases with t i m e .  

t h e  boots t rap  run of f igu re  7, the na tu ra l  frequency decr?ased from a'bout 

In 

per turb  t k e  system arid pri.jduse osci l laklor is .  

F i r s t  o f  all, t h e  system w a s  pzrtur'i.ei! w-d oscilla'ced on each run, 

when flow was f i rs t  est:ihli.sh&. 
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speeds p a r t i c u l a r l y  makes analysis  d i f f i c u l t ?  However, ava i lab le  da t a  are 
." cons is ten t  with the  model of propellant flow osc i l l a t ions  t h a t ,  each time 

t h e  pump enteres  stall, t h e  system experiences an underdamped o s c i l l a t i o n  

at a na tura l  system frequency. 

i 

Final ly ,  another set  of osc i l l a t ions  was observed whenever the re  w a s  a 

rap id  change i n  tu rb ine  power se t t ings ,  as i l l u s t r a t e d  i n  f i g u r e  7. There 

could be o ther  events, such as fiow separation or unchoking of an o r i f i c e ,  

which i n i t i a t e 6  osc i l l a t ions .  The foregoing are those t h a t  have been 

id.ent i f  ied.  

Possibly t h e  most importwit conclusioy of sill i s  t h e  absence of real  

operating problems during t h e  runs. Equipment has not y e t  been disassembled 

for de ta i l ed  inspection. However, all avai iab le  observations i n  a t o t a l  of 

25 experimental tests concerning -ch? s t a r t u p  of a f u l l - s c a l e  nuclear  rocket 

engine system wit5out nuclear power ir:dicate t h a t  no s ign i f i can t  problems 

i n  pump stail, pump caii t3;t ion,  boi l ing of l i q u i d  hydrogen, shrinkage and 

cooperation of cooperating par t s ,  imdequzte  t c rb ine  power t o  acce lera te  

t h e  propel lant  supply pump, or unstable system osciliacVions. . . s  

'That is, a l l  ind ica t ions  t o  da te  from t h e  da t a  cm nonnuclear s t a r t u p  are 

t h a t  t h e  boots t rap  s t a r t u p  of a nuclear rocket i n  space can be accomplislied. 

The authors express t h e i r  appreciation t o  R. W. Snyder, H. W. Fox, 

H. A. Rudey, and J. E. Reardon for. t h e i r  ass is tance,  m d  t o  J. C. Sanders 

f o r  h i s  he lpfu l  cr i t ic isrr?  and support. 

'However, a s i g n i f i c a r t  achievernedc i n  t h e  ove ra l l  program was t h e  
Creation of a technique which predicts  off-desigc-point accel.eratio3 out- 
s i d e  t h e  stall  region. 
separately.  

This ana ly t ica l  e f f o r t  i s  being reported 



Q) 
0 cu 
M 
I w 

Figure 1. - B-1 facility, Lewis Research Center. 
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Figure 2. - Nuclear rocket system test hardware. 



21.0- 

I I I I I I I I I 
0 1 2  3 4 5 6 7 8 9 10 5-1 ' 

I I I I I 

Time, sec 
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Figure 4 - C w l d w n  oscillations. 
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Figure 5. - System bootstrap. 
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Figure 6. - Bootstrap transients. 
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Figure 7. - Induced oscillations. 


